Automatic Generation and Selection of
Streamlined Constraint Models via Monte Carlo
Search on a Model Lattice

Patrick Spracklen, Ozgiir Akgiin, Tan Miguel

School of Computer Science, University of St Andrews, St Andrews, UK
{jlps, ozgur.akgun, ijm}@st-andrews.ac.uk

Abstract. Streamlined constraint reasoning is the addition of unin-
ferred constraints to a constraint model to reduce the search space, while
retaining at least one solution. Previously it has been established that it is
possible to generate streamliners automatically from abstract constraint
specifications in ESSENCE and that effective combinations of streamliners
can allow instances of much larger scale to be solved. A shortcoming of
the previous approach was the crude exploration of the power set of all
combinations using depth and breadth first search. We present a new
approach based on Monte Carlo search over the lattice of streamlined
models, which efficiently identifies effective streamliner combinations.

1 Introduction and Background

If the performance of a constraint model is found to be inadequate, a natural step
is to consider adding constraints to the model in order to assist the constraint
solver in detecting dead ends in search and therefore reducing overall search
effort. One approach is to add implied constraints, which can be inferred from
the initial model and are therefore guaranteed to be sound. Effective implied
constraints have been found both by hand [16,17] and via automated methods
[9, 10, 18]. If implied constraints cannot be found, or improve performance insuf-
ficiently, for satisfiable problems! a more aggressive step is to add streamliner
constraints [21], which are not guaranteed to be sound but are designed to reduce
significantly the search space while permitting at least one solution. For several
problem classes, effective streamliners have been found by hand by looking for
patterns in the solutions of small instances of those classes [21, 23,25, 26].
Wetter et al. [39] demonstrated how to generate effective streamliners au-
tomatically from the specification of a constraint problem class in the abstract
constraint specification language ESSENCE [13-15]. This method, which we ex-
pand upon, exploits the structure apparent in an ESSENCE specification, such
as that of the Progressive Party Problem (Fig. 1), to produce candidate stream-
liners via a set of streamliner generation rules. An effective streamliner that we

! Streamlining is unsuitable for unsatisfiable problems: streamliners are not necessarily
sound, so exhausting the search space does not prove unsatisfiability (a case split
approach is possible: a sub-problem with a streamliner, another with its negation).

© 00 O Ui Wi

e e e e e
© 00O Ut W+~ O

2 Spracklen, Akgiin, Miguel

language Essence 1.3
given n_boats, n_periods : int(l..)
letting Boat be domain int (1..n_boats)

find hosts : set (minSize 1) of Boat,
sched : set (size n_periods) of function (total) Boat --> Boat
minimising |hosts|

such that
$ Hosts remain the same throughout the schedule
forAll p in sched . range(p) = hosts,

S Hosts stay on their own boat
forAll p in sched . forAll h in hosts . p(h) = h,
S Hosts have the capacity to support the visiting crews
forAll p in sched . forAll h in hosts

(sum b in preImage (p,h) . crew(b)) <= capacity(h),
$ No two crews are at the same party more than once
forAll bl,b2 : Boat

bl < b2 -> (sum p in sched . toInt(p(bl) = p(b2))) <=1

Fig. 1. The Progressive Party Problem [35] in ESSENCE. There are two abstract decision
variables, a set of host boats, and a set of functions from boats to boats representing
the assignment of guests to hosts in each period. From this very concise, structured
statement of the problem, 160 candidate streamliners can be generated by our system.

automatically generate for this problem class constrains approximately half of
the entries in the sched set variable to be monotonically increasing functions.
Using training instances drawn from the problem class under consideration,
streamliner candidates are evaluated via a toolchain consisting of the automated
constraint modelling tools CONJURE [1-4] and SAVILE Row [30-32], and the
constraint solver MINION [20]. Promising candidates, which retain at least one
solution to the training instances while significantly reducing search, are used to
solve more difficult instances from the same problem class. Candidate stream-
liners are often most effectively used in combination. For example, Wetter et al.
presented an effective combination of three streamliners for the Van der Waer-
den numbers problem. Hence, the space of streamlined models forms a lattice
where the root is the original ESSENCE specification and an edge represents the
addition of a streamliner to the combination associated with the parent node.

A shortcoming of Wetter et al.’s work is the uninformed manner in which the
streamliner lattice is explored using depth- or breadth-first search. Our principal
contribution is a new method for exploring the lattice via Monte Carlo-style
search, allowing more effective streamlined models to be found in a time budget.
A second contribution is a set of new streamliner generator rules for sequence and
matrix ESSENCE type constructors to complement those presented by Wetter et
al. Finally, we demonstrate the efficacy of our approach on a variety of problems.

Automatic Generation and Selection of Streamlined Constraint Models 3

Name matrix all

Param R (another rule)

Input X: matrix indexed by [I] of _
Output forAll i : I . R(X[1i])

Name matrix most (similarly for matrix half and matrix approximately half)
Param R (another rule)

Input X: matrix indexed by [I] of _

Output |I| / 2 <= sum i : I . toInt(R(X[i]))

Name sequence monotonically increasing (similarly for monotonically decreasing)
Input X: sequence of _
Output forAll i,j in defined(X). i < Jj —-> X (i)<= X (7J)

Name sequence smallest first (similarly for largest first)
Input X: sequence of _
Output forAll i in defined(X). X (min (defined (X)))<= X (i)

Name sequence on defined (similarly for range)
Param R (another rule)

Input X: sequence of _

Output R (defined (X))

Fig. 2. Streamliner generators for sequence and matrix domains.

2 Essence Specifications and Streamliner Generators

An ESSENCE specification such as that presented in Fig. 1 identifies: the input
parameters of the problem class (given), whose values define an instance; the
combinatorial objects to be found (£ind); the constraints the objects must sat-
isfy (such that); identifiers declared (letting); and an (optional) objective
function (min/maximising). The key feature of the language is its support for
abstract decision variables, such as set, multiset, relation and function, as well
as nested types, such as the set of functions found in Fig. 1.

A concise, structured specification of a problem class directly supports the
generation of powerful candidate streamliners: in the example, it is readily ap-
parent that the problem requires us to find a set of boats and a set of functions
assigning guest boat crews to hosts. Hence, streamliners related to sets and
functions, such as that given in the introduction, can be generated straightfor-
wardly. In contrast an equivalent constraint model in, for example, MiniZinc [29]
or ESSENCE PRIME [31] has to represent these abstract decision variables with
constrained collections of more primitive (e.g. integer domain) variables, such
as the matrix model [11,12] proposed by Smith et al. [35]. In this context, it
is significantly more difficult to recognise the structure (i.e. the set and set of
functions) in the problem and generate the equivalent streamliners.

Wetter et al. present a set of streamliner generation rules for the ESSENCE
type constructors set, function and partition, as well as simple integer domains
[39]. Our first contribution is to extend this set also to cover sequence and matrix

4 Spracklen, Akgiin, Miguel

type constructors. These are summarised in Figure 2. For decision variables with
matrix domains, one generator (matrix all) takes another streamliner generator
as a parameter (R, as a simple example: constrain an integer variable to take
an even value) and lifts it to operate on all entries in a matrix. This rule can
be applied to higher dimensional matrix domains as well, in which case the
multi-dimensional matrix domain is interpreted in the same way as a series
of nested one-dimensional matrix domains. The generators matrix most (and
matrix half and matrix approximately half) operate in a similar way. In contrast
to the matrix all streamliner generator, these generators first reify the result of
applying R, and then restrict the number of places the constraint must hold.
For sequence domains, we present two sets of first-order streamliner gen-
erators: monotonically increasing(or decreasing) and smallest (or largest) first.
These do not take another generator as a parameter but directly post constraints
on the sequence decision variable. The sequence on range and sequence on de-
fined generators take an existing streamliner generator as a parameter and lift
it to work on the range or the defined set of the sequence domain respectively.

3 Monte Carlo Search for Streamliner Combinations

Le Bras et al. [24] and Wetter et al. [39] both observed that by applying several
streamlining constraints to a model simultaneously the search required for find-
ing the first solution can be reduced further than by applying the streamliners
in isolation. Finding an effective streamliner combination involves searching the
streamliner lattice, the size of which is determined by the power set of all can-
didate streamliners for a given problem class. Table 1 presents the number of
candidate streamliners our current set of generation rules produces for a number
of problem classes. In some cases the number of candidates generated is small.
However, the cost of evaluating each combination on a set of test instances means
that it is typically not feasible to evaluate all possible streamliner combinations.

Wetter et al. employed breadth-first and depth-first search to explore the
streamliner lattice in an uninformed manner. The motivation for our work is the
hypothesis that a best-first search can allow more effective streamliner combi-
nations to be discovered within a given time budget. Our approach is to focus
the search onto areas of the lattice where the streamliners combine to give the
greatest reduction in search while retaining at least one solution.

For a given problem class, we have no prior knowledge of the performance
of the set of candidate streamliners, either individually or in combination. This
raises the issue of the exploration/exploitation problem: if we can identify a
combination of streamliners that performs well, should we try and exploit that
combination further by evaluating the addition of further streamliners, or should
we explore other parts of the lattice that may at present seem less promising?

The exploration/exploitation tradeoff can be formalised in several reinforce-
ment learning variants, including via markov decision processes [?]. We model
this situation as a multi-armed bandit problem [5], which allows us to employ
regret minimising algorithms to deal with the exploration/exploitation dilemma.

Automatic Generation and Selection of Streamlined Constraint Models 5

The multi-armed bandit can be seen as a set of real distributions, each distribu-
tion being associated with the rewards delivered by one of the K levers. Since
the multi-armed bandit problem assumes that each lever corresponds to an in-
dependent action, in order to use it directly we would have to associate a lever
with each point in the streamliner lattice, which is infeasible in general. Instead,
we use the bandit algorithm to guide the exploration of the lattice in a process
reminiscent of Monte Carlo Tree Search (MCTS) [7], as described below.

3.1 Algorithm Outline

Our algorithm has the same four basic steps as MCTS. It uses Upper Confidence
bound applied to Trees (UCT) [7] to balance exploration and exploitation.

1. Selection: Starting at the root node, the UCT policy is recursively applied
to traverse the explored part of the lattice until an unexpanded, but expand-
able node is reached. A node is expandable if it has at least one child that
is not marked as pruned (§3.5). A child node is selected to maximise:

21
UCT = X; + 20, | ——

n;j

where n is the number of times the current (parent) node in the lattice has
been visited, n; the number of times child j has been visited, X; is the mean
reward associated with child j and C, > 0 is a constant [7].

2. Expansion: Enumerate the children of the Selected node and choose one to
expand according to the heuristic explained in Section 3.4.

3. Simulation: The collection of streamliners associated with the expanded
node are evaluated using the CONJURE, SAVILE Row, and MINION toolchain.

4. BackPropagation: The result of the evaluation is propagated back up
through the lattice to update reward values, as explained below.

3.2 Back Propagation

Since our search is operating over a lattice, a node may have multiple parents.
This requires an alteration to the back propagation employed in MCTS: when we
perform back propagation that reward value is back propagated up all paths from
that node to the root. To illustrate consider a problem with two streamliners
{A,B} and we are back propagating from a node in the lattice representing the
combination {AB}. There are two paths by which this node could have been
reached, {root - A — B} and {root - B — A}. Although the algorithm will
have only descended one of these paths, because the reward value of a node in the
lattice is representative of the ability of the streamliner combination represented
by that node to combine and produce effective reductions in search, the node
in the lattice that represents streamliner combination {B} should also receive
this reward. For this reason both paths are rewarded accordingly and the reward
generated is back propagated up all paths from that node to the root. We also

6 Spracklen, Akgiin, Miguel

ensure that a node that lies on more than one such path is rewarded only once.
The cost of back propagation thus grows exponentially with depth. However,
since each level of the lattice represents an additional constraint it is unlikely that
satisfiability is maintained at great enough depths for this to become an issue.
Empirically, the cost is insignificant relative to solving the training instances.
We must also consider the situation where a node in a path back to the root
has not yet been expanded. If we ignore such nodes, their true reward is not
reflected in their reward values because all reward values back propagated from
child nodes prior to their creation are lost. Our approach is that when a node is
expanded, it absorbs the reward value and visit count of its immediate children
that have already been expanded. This avoids caching a potentially large set of
values while maintaining reward values for nodes around the focus of our search.

3.3 Simulation Reward

The performance of our best first search algorithm is heavily reliant on how the
reward is produced from the simulation step. Initially we assigned rewards as
follows: if the majority of the instances evaluated are unsatisfiable a reward of
-1 is back-propagated, otherwise a reward of one minus the average reduction
in search space (expressed in search nodes) is returned. While this is valid, our
initial experiments revealed that its effect was to produce a search strategy
similar to breadth-first search - i.e. too strong a bias towards exploration.

The reason for this is that the penalty value is too punitive when evaluating
larger streamliner combinations. Intuitively, the penalty should be sensitive to
the depth we have travelled into the lattice: as we add streamliners we reduce
the search space and we expect the probability of such failure to rise. Therefore
we divide the penalty value by the depth of the node being evaluated, allowing
the prolonged exploration of promising paths.

3.4 Expansion Heuristic

The order of expansion of child nodes is an important factor in performance. An
expanded child consumes time to perform simulation and, because the simulation
reward is back propagated, if a penalty is awarded it can affect the likelihood
of the parent node being selected on the next iteration. During the expansion
phase of our algorithm child nodes are expanded in descending likelihood of the
application of the associated streamliner combination resulting in a satisfiable
problem. In order to facilitate this, when a successful simulation is performed, for
a representative instance the solution found is stored, along with the approximate
size of its search space (via the product of the domains of the decision variables
in the model) and the proportion of the space explored to find the solution.
Upon expansion all potential children are enumerated and for each we check
whether the additional associated streamliner invalidates the solution stored at
the expanding parent. If the solution remains valid then the child is preferred
for expansion because we know pre-simulation that the associated streamliner
combination satisfies at least one instance and the additional streamliner might

Automatic Generation and Selection of Streamlined Constraint Models 7

reduce search. If the solution is invalidated then the search space explored by the
child is smaller than the expanding parent. We use the proportion of search space
explored to find the solution associated with the expanding parent to estimate
the likelihood of a solution existing in that subspace. Intuitively, if the parent
explored a large fraction of the space then it is less likely that a solution will be
found when adding the streamliner associated with the child node.

3.5 Pruning the Streamliner Lattice

As per §3.2, when a simulation for a streamliner combination reveals that the
majority of training instances are unsatisfiable, a penalty is back propagated up
the lattice. We also mark the node associated with the simulation as pruned and
never consider any of its children for expansion. In addition, we prune nodes
whose additional streamliner is determined to be redundant in combination with
those inherited from the expanding parent, in the sense that it causes no further
reduction in search on the evaluated instances. Pruning the lattice by these two
methods typically reduces the number of nodes to be expanded very significantly.

4 Empirical Evaluation

We evaluate two hypotheses empirically. First, that the best-first search is more
effective in exploring the streamliner lattice than the simpler depth- and breadth-
first search methods employed in [39]. Second, that our method is able to auto-
matically find streamliner combinations that drastically reduce the search space
across a variety of problem classes.

We experiment with thirteen problem classes, eight from Wetter et al. and the
remainder selected for variety, particularly problem classes requiring significantly
more instance data such as SONET [27]. Streamlining can aid in the search
for feasible solutions of optimisation problems, but not the proof of optimality.
Hence, in our experiments we transformed optimisation into decision problems
by the standard method of bounding the objective and searching for a satisfying
solution. The results we obtain are very positive, as presented in Table 1.

5 Conclusion

We have presented a new method for the automated generation of streamlined
constraint models from a large set of candidates via Monte Carlo search. Our
method is efficient in searching the space of candidates, producing more effective
streamlined models in less time than less informed approaches. Our empirical
results demonstrate a vast reduction in search across a variety of benchmarks.

As part of future work we plan to explore the generation of streamlined
versions of alternative models generated by CONJURE. We expect the utility of
particular streamlining constraints to vary depending on the model.

Acknowledgements This work was supported via EPSRC EP/P015638/1. We
thank our anonymous reviewers for helpful comments.

Spracklen, Akgiin, Miguel

Sururjures1)s-g T (0gdo /do-soeys /oo qnuyis/ /:dyy1] w01} POPROUMOD ([URD 9POD 9IINOS PUR ‘SINSOI MRI ‘S[OPOW ‘Bjep [ejustiLiodXy
"oUIYORW S[SUIS ® UO UNI 9Iom Sse[d wo[qold

[eNpIAIpUL Ue 10} SyuewlIadXa [[V "ZHD06'C 18 OHOZE9-LI 2100 [9IU] 2100 § U pUR Z[Y) ['Z € gLZg9 uo1yd() (N 9109-g¢ © UO UNI dIom
syuowiLIadxo [euorye)nduwod [[y "OUWI} PUR SOPOU [DIedS [0 Ul UOIIONPAI JseA AJULIOJIUN © UTRICO dM SHUTRIISUOD SUTUI[UIRAILS JO UOIHIPPe
oY) USNOIY, "SeduRISUI 9$0] [[UO A[IRYSIjes paureal sse[d wo[qold yoes I0J SISUIUIRSI)S PIJId[as o], "POYIOUW [DIess aA100dsel oY)
Sursn punoj UOIYeuIquIod ISUI[UIEIIS SAT}IPS JSOW 9} [IIM POUI[WEI)S [POW Y} Y}IM [OPOW PIUIUIBSIIS-UOU Y} UO UOIIN[OS ISIY oY)
puy o3 paxmbar yoress o) Surreduiod Aq paInseawl SI SOPOU OIS Pu®R dWII} [0 I0J UOIIONPAI ULI[\ SUOIIRUICUIOD ISUI[UIRDIIS [[R JO
oords o) YDIees APATISNIRYX 07 9[qe alom om (g ¢§) Surunid y3noiy) se ‘oarjos]je A[renba oIe SpOYIOW [[& SAI}IL]JS JSOUW 81} 8] 0} PUNOJ
Sem ISQUITUIEDI)S S[SUIS © 9I9YM Sosse[d Wwe[qoid a1} 10, 's}nsal Iorredns PoIA ey} SUOIJRUIqUIOd I9SIe] ISA0ISIP 0} 9[qe SI POYJOW [IIess
o[Ie)) 9JUOTN 92 SOSeD 9SAY) U] '] PUR 9 ‘f SUWN[0D UT pajuasald se ‘SjureIjsuod SUTUI[UIEDI)S [eNPIAIPUI JO UOIJRUIqUIOD © JO pasodurod st
POIOAODSID IQUI[UIRDILS DAIII9]S JSOU 91 sosse[o wajqold o) Jo AjrIoleur [e1jue)sSqNS o) 10 "¢ PUR g SUWN[OD Ul S[OPOUW POUI[UIEDIIS-UOU
Sursn seour)SUI 1599 Y} I0j UOI[OS 0} SWI} UBSW SY) PUER SISUI[WIEDIIS 9)ePIPURD JO ISQUINU 9} PI0dal dA\ “d[qesrjdde are sioururesal)s
oY} UOIYM IO} sse[d wa[qold 9I1Ud 9} IOAO PISILIOUTR ST YDIYM 4500 ' ‘sse[d woqold 1od SInoy XIs Jo 498pn(Sulurel) dwes o} POATOII
SpOYJewl 90} [[V "S19S 159} pue Jururer) ojul (Og/(L 1[ds oIom sedURISUI Us9YJY ‘sosse[d wo[qoid WeelIIy) oY) Jo Yoes 104 °T 9[qe],

%I1'¥8 %0°€6 1 %0°£6 T %0°€6 1 L18 8 log] dUAD
%896 %976 I3 %% L8 e %0°TL I 8.9 79 [22] LEANOS
%L°G8 %1°98 1 %1°98 T %1°98 1 12 ! [ce] vdad
%6°LE %6°1€ 1 %6°1¢ 1 %6°1¢ 1 $TL 9¢ [eg] Surouenbeg 1epH
%808 %E"88 v %V L9 z %8°69 z z1 Tl [61] sydein eeypy [njeoeln
%I1°L8 %8°16 ¢ %9°08 z %¥°G8 4 868 Tl [9] swiey [nyeor1n
%168 %G°G6 4 %678 4 %9°'%9 4 £6¥) [8g] sreap [nyedeln
%% 06 %T V6 v %0°18 3 %9°G9 4 TLS zL [og] sydeip (eoym o[quoq [nyedern
%L'G6 %% 96 v %E'28 z %Y T8 e Tr1 c9 [Lg] s1oqUINN UGPIOBA\ IO UBA
%V°LS %0°€8 1 %0°€8 I %0°€8 I Leg L1 [pg] eoueysixy dnoisisens)
%868 %E"T6 I3 %V°18 I % 6E I 7Sz g9 [8g] ewrwroT s anyog
%G°€6 %z 96 I3 %I°€8 e %LTL z 7S 9L (8] gHIN
%L°16 %T €6 v %S TF z %E' 8V i 9. 09T [gg] £3req oarsseaSoig
awr T, SOPON SOPON SOPON (spuoooag) e —_.—

yoleag ul yodIeag Ul ozIs oIeag ul 9zZIs oIeag ut 9ZIS ouwILT, : .

Eomwuﬁﬁw‘m :OMPUS@Q‘WN Eompﬁwﬁmﬂeoo Eompoﬁﬁw‘m ﬁOMQNEmDEOO EOMAUSUQZ ﬁomaﬁgmﬂeoo ®OC»®HWCH @wdﬁu:uﬁdo vvdﬁo EQMO—OM&
:ﬁ@E Q@@E Edwz Edwu\é Edmz mO hOQEZZ

o[1e)) 9UON sdd sdda

Automatic Generation and Selection of Streamlined Constraint Models 9

References

10.

11.

12.

13.

14.

15.

16.

Akgiin, O.: Extensible automated constraint modelling via refinement of abstract
problem specifications. Ph.D. thesis, University of St Andrews (2014)

Akgiin, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L.,
Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection
in Conjure. In: International Conference on Principles and Practice of Constraint
Programming. pp. 107-116. Springer (2013)

Akglin, 0., Gent, 1.P., Jefferson, C., Miguel, 1., Nightingale, P.: Breaking con-
ditional symmetry in automated constraint modelling with Conjure. In: ECAIL
pp. 3-8 (2014)

Akgiin, O., Miguel, L., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated
constraint modelling. In: Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence. pp. 4-11. AAAT Press (2011)

. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the mul-

tiarmed bandit problem. Machine Learning 47(2), 235-256 (May 2002).
https://doi.org/10.1023/A:1013689704352

Ayel, J., Favaron, O.: Helms are graceful. Progress in Graph Theory (Waterloo,
Ont., 1982), Academic Press, Toronto, Ont pp. 89-92 (1984)

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Tavener, S.,
Perez, D., Samothrakis, S., Colton, S., et al.: A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI (2012)
Cagalj, M., Hubaux, J.P., Enz, C.: Minimum-energy broadcast in all-wireless net-
works: Np-completeness and distribution issues. In: Proceedings of the 8th annual
international conference on Mobile computing and networking. pp. 172-182. ACM
(2002)

Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: ECAL vol. 141, pp. 73-77 (2006)

Colton, S., Miguel, I.: Constraint generation via automated theory formation. In:
International Conference on Principles and Practice of Constraint Programming.
pp. 575-579. Springer (2001)

Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, 1., Walsh, T.: Matrix mod-
elling. In: Proc. of the CP-01 Workshop on Modelling and Problem Formulation.
p. 223 (2001)

Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, 1., Walsh, T.: Matrix mod-
elling: Exploiting common patterns in constraint programming. In: Proceedings of
the International Workshop on Reformulating Constraint Satisfaction Problems.
pp. 27-41 (2002)

Frisch, A.M., Grum, M., Jefferson, C., Herndndez, B.M., Miguel, I.: The essence
of essence. Modelling and Reformulating Constraint Satisfaction Problems p. 73
(2005)

Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The design of
essence: A constraint language for specifying combinatorial problems. In: IJCAI
vol. 7, pp. 80-87 (2007)

Frisch, A.M., Harvey, W., Jefferson, C., Martinez-Herniandez, B., Miguel, I.:
Essence: A constraint language for specifying combinatorial problems. Constraints
13(3), 268-306 (2008)

Frisch, A.M., Jefferson, C., Miguel, I.: Symmetry breaking as a prelude to implied
constraints: A constraint modelling pattern. In: ECAL vol. 16, p. 171 (2004)

10

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Spracklen, Akgiin, Miguel

Frisch, A.M., Miguel, I., Walsh, T.: Symmetry and implied constraints in the steel
mill slab design problem. In: Proc. CP01 Workshop on Modelling and Problem
Formulation (2001)

Frisch, A.M., Miguel, I., Walsh, T.: Cgrass: A system for transforming constraint
satisfaction problems. In: Recent Advances in Constraints, pp. 15-30. Springer
(2003)

Frucht, R.: Graceful numbering of wheels and related graphs. Annals of the New
York Academy of Sciences 319(1), 219-229 (1979)

Gent, L.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
ECAL vol. 141, pp. 98-102 (2006)

Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: International
Conference on Principles and Practice of Constraint Programming. pp. 274-289.
Springer (2004)

Huczynska, S., McKay, P., Miguel, 1., Nightingale, P.: Modelling equidistant fre-
quency permutation arrays: An application of constraints to mathematics. In: In-
ternational Conference on Principles and Practice of Constraint Programming. pp.
50-64. Springer (2009)

Kouril, M., Franco, J.: Resolution tunnels for improved sat solver performance. In:
International Conference on Theory and Applications of Satisfiability Testing. pp.
143-157. Springer (2005)

Le Bras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are grace-
ful. In: Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence. pp. 587-593. IJCAI ’13, AAAI Press (2013),
http://dl.acm.org/citation.cfm?id=2540128.2540214

Le Bras, R., Gomes, C.P., Selman, B.: On the erdds discrepancy problem. In:
International Conference on Principles and Practice of Constraint Programming.
pp. 440-448. Springer (2014)

LeBras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: IJCAI
pp. 587-593 (2013)

Lee, Y., Sherali, H.D., Han, J., Kim, S.i.: A branch-and-cut algorithm for solving
an intraring synchronous optical network design problem. Networks 35(3), 223-232
(2000)

Ma, K., Feng, C.: On the gracefulness of gear graphs. Math. Practice Theory 4,
72-73 (1984)

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard cp modelling language. In: International Conference on
Principles and Practice of Constraint Programming. pp. 529-543. Springer (2007)
Nightingale, P., Akgiin, O., Gent, L.P., Jefferson, C., Miguel, I.: Automatically
improving constraint models in Savile Row through associative-commutative com-
mon subexpression elimination. In: 20th International Conference on Principles
and Practice of Constraint Programming (CP 2014). pp. 590-605. Springer (2014)
Nightingale, P., Akgiin, O., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artificial Intelligence
251, 35-61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding
of constraint problems through common subexpression elimination in Savile Row.
In: Proceedings of the 21st International Conference on Principles and Practice of
Constraint Programming (CP 2015). pp. 330-340. Springer (2015)

Parrello, B.D., Kabat, W.C., Wos, L.: Job-shop scheduling using automated reason-
ing: A case study of the car-sequencing problem. Journal of Automated reasoning
2(1), 1-42 (1986)

34.

35.

36.
37.
38.

39.

Automatic Generation and Selection of Streamlined Constraint Models 11

Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search:
Quasigroup existence problems. Computers & mathematics with applications
29(2), 115-132 (1995)

Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The progressive
party problem: Integer linear programming and constraint programming compared.
Constraints 1(1-2), 119-138 (1996)

Toth, P., Vigo, D.: The vehicle routing problem. STAM (2002)

van der Waerden, B.: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk.
19, 212-216 (1927)

Walsh, T.: CSPLib problem 015: Schur’s lemma
http://www.csplib.org/Problems/prob015

Wetter, J., Akgiin, O., Miguel, I.: Automatically generating streamlined constraint
models with Essence and Conjure. In: International Conference on Principles and
Practice of Constraint Programming. pp. 480-496. Springer (2015)

